Introduction (Chapter 1: Sections 1-6)

Learning Outcomes

- Learn about computers and programming
- write and run your first Python program
- · recognize compile-time and run-time errors

Computer Programs

- The **computer** is a machine that **stores** data (numbers, words, pictures), **interacts** with devices (the monitor, the sound system, the printer, the scanner), and **executes** programs.
- A computer program tells a computer, in minute detail, the sequence of steps that are needed to fulfill a task.
 - The act of designing and implementing computer programs is called programming.
- The physical computer and peripheral devices are collectively called the hardware.
- The programs the computer executes are called the software.

The Anatomy of a Computer

Computer **Hardware** consists of the physical elements in a computer system.

- The central processing unit (CPU) performs program control and data processing
- Storage devices include
 - Primary memory: Consists of memory chips (electronic circuits that can store data as long as it is provided electric power).
 - Fast and more expensive.
 - o e.g., RAM and ROM

0

- Secondary storage: Provides slower, less expensive storage that is persistent (without elective power)
 - o e.g., Hard disks, flash drives, CD/DVD drives.
- Computers store both data and programs
 - Both are located in secondary storage and are loaded into primary storage when programs are executed.
- **Input/output** devices allow the user to interact with the computer
 - Mouse, keyboard, printer, screen

The Central Processing Unit (CPU)

- The CPU has two components, the control unit and the arithmetic logic unit
- The **control unit** directs operation of the processor.
 - Computer resources are managed by the control unit.
 - Controls communication and co-ordination between input/output devices.
 - Reads and interprets instructions and determines the sequence for processing the data.
 - Provides timing and control signals
- The arithmetic logic unit contains the circuitry to perform calculations and do comparisons.
 - It is the workhorse portion of the computer and its job is to do precisely what the control unit tells it to do.

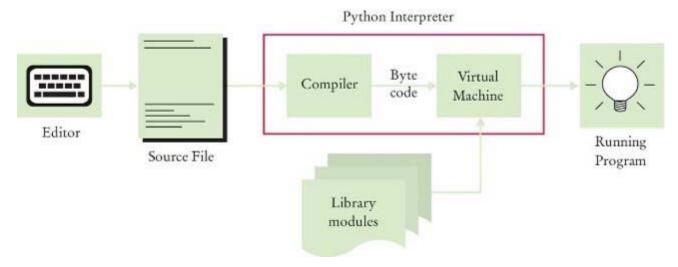
- Program instructions and data (such as text, numbers, audio, or video) are stored on the hard disk, on a compact disk (or DVD), or elsewhere on the network.
- When a program starts, it is brought into memory, where the CPU can read it.
 - one instruction at a time.
 - The CPU reads, modifies and writes data back to memory or the hard disk.
- Some program instructions will cause the CPU to place dots on the display screen or printer or to vibrate the speaker.
- Some program instructions read user input from the keyboard or mouse.
 - The program analyzes the nature of these inputs and then executes the next appropriate instruction.

The Python Programming Language

- High-level programming languages specify a large number of simple CPU instructions with much fewer understandable statements.
 - Specifying CPU instructions can be tedious and error-prone.
- One very popular high level language is Python.
 - Developed by Guido van Rossum in the early 1990s.
 - Wanted a language suitable for writing smaller programs that may not run at optimum speed.
 - As opposed to other languages like Java or C.
- Some reasons for Python's success:
 - Simpler and cleaner syntax than Java, C, and C++.
 - Can try out short Python programs in an interactive environment.
 - Portable between computer systems.

Becoming Familiar with Your Programming Environment

- There are several ways of creating a computer program
 - Using an Integrated Development Environment (IDE)
 - Using a text editor
- We will use the Jupyter Notebook (Details on installing it will be provided in the first lab)
- **Jupyter Notebook** is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.


In [1]:

- Slides of this course have been developed using Jupyter.
- A big advantage is that we use the same platform to present and run Python code.
- Let us look at our first Python program

```
# My first Python program.
print("Hello, Saudi World!")
print("Hello Sultan")
Hello, Saudi World!
Hello Sultan
```

How do Python programs run?

- 1. The compiler reads your source code (that is, the Python instructions that you wrote) all at once.
- 2. The compiler translates the instructions into **byte code**.
 - **Byte codes** are very simple instructions understood by the **virtual machine** (a separate program that is similar to the CPU of a computer).
- 3. Any necessary libraries are automatically located and included by the virtual machine.
 - For example, the implementation of the **print** function.
- 4. The virtual machine executes your byte code.

Analyzing Your First Program


In [3]:

```
# My first Python program.
print("Hello, World!")
Hello, World!
```

•

- The first line is a comment.
- Comments start with a # and are not considered statements (ignored by the interpreter).
- The second line displays a line of text, viz., Hello, World! using the print function.
- A **function** is a *collection* of programming instructions that carry out a particular task.
- "Hello, World!" is called a string.
- To use, or call, a function in Python, you need to specify:
- The name of the function you want to use (in this case, print).
- Any values the function needs to carry out its task (in this case, "Hello, World!").
 - The technical term for such a value is an argument.
 - Arguments are enclosed in parentheses.
 - Multiple arguments are separated by commas.
 - The number of arguments required depends on the function.

 Syntax of the print statement print Statement

More Examples of the Print Statement

• Printing numerical values

```
In [ ]:
print(3 + 4)
```

• Passing multiple values to the function

```
In [ ]: print("The answers of adding", "and multiplying are", 6 + 7, 6 * 7, ", respectively")
```

- Note that each value passed to the function is displayed, one after another, with a blank space after each value.
- By default the print function starts a new line after its arguments are printed

```
In [ ]:
print("Hello")
print("World!")
```

Our Second Program (printtest.py)

```
In []:
##
# Sample program that demonstrates the print function.
#
# Prints 7.
print(3 + 4)
```

```
# Prints "Hello World!" in two lines.
print("Hello")
print("World!")

# Prints multiple values with a single print function call.
print("My favorite numbers are", 3 + 4, "and", 3 + 10)

# Prints three lines of text with a blank line.
print("Goodbye")
print()
print("Hope to see you again")
```

Errors

- There are two Categories of Errors:
 - Compile-time Errors (Syntax Errors)
 - Run-time Errors (Logical Errors)

Compile-time Errors

- Spelling, capitalization, punctuation
- Ordering of statements, matching of parenthesis, quotes, ...etc.

```
## Uncomment each statement.
#print("Hello, World!)
#print("Hello, World!")
#print("Hello World!')
#print('Hello'
```

- No executable program is created by the compiler
- Correct first error listed, then compile again.
- Repeat until all errors are fixed

Run-time Errors

- The program runs, but produces unintended results
- The program may crash

```
In [ ]:
## Uncomment each statement.
#print("Hello, Word!")
#print(1/0)
```

In [8]:

• Note that run-time errors are more troublesome. They are the harder to find and fix because the interpreter cannot flag them for us.

Problem Solving (Algorithm Design)

- Self Reading
- The topic will be discussed in Lab 2.

Summary

Computer Basics

- Computers rapidly execute very simple instructions
- A Program is a sequence of instructions and decisions
- Programming is the art (and science) of designing, implementing, and testing computer programs
- The Central Processing Unit (CPU) performs program control and data processing
- Storage devices include memory and secondary storage (e.g., a USB Flash Drive)

Python

- Python was designed in a way that makes it easier to learn than other programming languages such as Java, C and C++.
- The designers goal was to give Python simpler and cleaner syntax.
- Set aside some time to become familiar with the programming environment that you will use for your class work.
 - It is important to practice with the tool so you can focus on learning Python
- An editor is a program for entering and modifying text, such as a Python program.
- Python is case sensitive.
 - You must be careful about distinguishing between upper and lowercase letters.
- The Python compiler translates source code into byte code instructions that are executed by the Virtual machine.
- A function is called by specifying the function's name and its parameters.
- A string is a sequence of characters enclosed in quotation marks.

Errors

- A compile-time error is a violation of the programming language rules that is detected by the compiler.
- A run-time error causes a program to take an action that the programmer did not intend.